[Bjonnh.net]# _

authors Kathryn M. Nelson ORCID , Jonathan Bisson ORCID , Gurpreet Singh ORCID , James G. Graham ORCID , Shao-Nong Chen ORCID , J. Brent Friesen ORCID , Jayme L. Dahlin ORCID , Matthias Niemitz ORCID , Michael A. Walters ORCID , Guido F. Pauli ORCID
journal Journal of Medicinal Chemistry
subjects Pharmacognosy IMPS Artifacts Cannabis

This Perspective of the published essential medicinal chemistry of cannabidiol (CBD) provides evidence that the popularization of CBD-fortified or CBD-labeled health products and CBD-associated health claims lacks a rigorous scientific foundation. CBD’s reputation as a cure-all puts it in the same class as other “natural” panaceas, where valid ethnobotanicals are reduced to single, purportedly active ingredients. Such reductionist approaches oversimplify useful, chemically complex mixtures in an attempt to rationalize the commercial utility of natural compounds and exploit the “natural” label. Literature evidence associates CBD with certain semiubiquitous, broadly screened, primarily plant-based substances of undocumented purity that interfere with bioassays and have a low likelihood of becoming therapeutic agents. Widespread health challenges and pandemic crises such as SARS-CoV-2 create circumstances under which scientists must be particularly vigilant about healing claims that lack solid foundational data. Herein, we offer a critical review of the published medicinal chemistry properties of CBD, as well as precise definitions of CBD-containing substances and products, distilled to reveal the essential factors that impact its development as a therapeutic agent.

Read More...
categories publications science

authors Kathryn M. Nelson ORCID , Jayme L. Dahlin ORCID , Jonathan Bisson ORCID , James Graham , Guido F. Pauli ORCID , Michael A. Walters ORCID
journal Journal of Medicinal Chemistry
subjects Pharmacognosy Phytochemistry Curcumin IMPs PAINS Review

Curcumin is a constituent (up to ∼5%) of the traditional medicine known as turmeric. Interest in the therapeutic use of turmeric and the relative ease of isolation of curcuminoids has led to their extensive investigation. Curcumin has recently been classified as both a PAINS (pan-assay interference compounds) and an IMPS (invalid metabolic panaceas) candidate. The likely false activity of curcumin in vitro and in vivo has resulted in >120 clinical trials of curcuminoids against several diseases. No double-blinded, placebo controlled clinical trial of curcumin has been successful. This manuscript reviews the essential medicinal chemistry of curcumin and provides evidence that curcumin is an unstable, reactive, nonbioavailable compound and, therefore, a highly improbable lead. On the basis of this in-depth evaluation, potential new directions for research on curcuminoids are discussed.

Read More...
categories publications science

authors Jonathan Bisson ORCID , James McAlpine , J. Brent Friesen ORCID , Shao-Nong Chen ORCID , James Graham , Guido F. Pauli ORCID
journal Journal of Medicinal Chemistry
subjects Pharmacognosy Phytochemistry Perspectives Fundamental research IMP bioactivity data mining NAPRALERT

High-throughput biology has contributed a wealth of data on chemicals, including natural products (NPs). Recently, attention was drawn to certain, predominantly synthetic, compounds that are responsible for disproportionate percentages of hits but are false actives. Spurious bioassay interference led to their designation as pan-assay interference compounds (PAINS). NPs lack comparable scrutiny, which this study aims to rectify. Systematic mining of 80+ years of the phytochemistry and biology literature, using the NAPRALERT database, revealed that only 39 compounds represent the NPs most reported by occurrence, activity, and distinct activity. Over 50% are not explained by phenomena known for synthetic libraries, and all had manifold ascribed bioactivities, designating them as invalid metabolic panaceas (IMPs). Cumulative distributions of ∼200,000 NPs uncovered that NP research follows power-law characteristics typical for behavioral phenomena. Projection into occurrence–bioactivity–effort space produces the hyperbolic black hole of NPs, where IMPs populate the high-effort base.

Read More...
categories publications science