[Bjonnh.net]# _

authors Kathryn M. Nelson ORCID , Jonathan Bisson ORCID , Gurpreet Singh ORCID , James G. Graham ORCID , Shao-Nong Chen ORCID , J. Brent Friesen ORCID , Jayme L. Dahlin ORCID , Matthias Niemitz ORCID , Michael A. Walters ORCID , Guido F. Pauli ORCID
journal Journal of Medicinal Chemistry
subjects Pharmacognosy IMPS Artifacts Cannabis
This Perspective of the published essential medicinal chemistry of cannabidiol (CBD) provides evidence that the popularization of CBD-fortified or CBD-labeled health products and CBD-associated health claims lacks a rigorous scientific foundation. CBD’s reputation as a cure-all puts it in the same class as other “natural” panaceas, where valid ethnobotanicals are reduced to single, purportedly active ingredients. Such reductionist approaches oversimplify useful, chemically complex mixtures in an attempt to rationalize the commercial utility of natural compounds and exploit the “natural” label.
Read More...
categories publications science

authors Kathryn M. Nelson ORCID , Jayme L. Dahlin ORCID , Jonathan Bisson ORCID , James Graham , Guido F. Pauli ORCID , Michael A. Walters ORCID
journal Journal of Medicinal Chemistry
subjects Pharmacognosy Phytochemistry Curcumin IMPs PAINS Review
Curcumin is a constituent (up to ∼5%) of the traditional medicine known as turmeric. Interest in the therapeutic use of turmeric and the relative ease of isolation of curcuminoids has led to their extensive investigation. Curcumin has recently been classified as both a PAINS (pan-assay interference compounds) and an IMPS (invalid metabolic panaceas) candidate. The likely false activity of curcumin in vitro and in vivo has resulted in >120 clinical trials of curcuminoids against several diseases.
Read More...
categories publications science

authors Jonathan Bisson ORCID , James McAlpine , J. Brent Friesen ORCID , Shao-Nong Chen ORCID , James Graham , Guido F. Pauli ORCID
journal Journal of Medicinal Chemistry
subjects Pharmacognosy Phytochemistry Perspectives Fundamental research IMP bioactivity data mining NAPRALERT
High-throughput biology has contributed a wealth of data on chemicals, including natural products (NPs). Recently, attention was drawn to certain, predominantly synthetic, compounds that are responsible for disproportionate percentages of hits but are false actives. Spurious bioassay interference led to their designation as pan-assay interference compounds (PAINS). NPs lack comparable scrutiny, which this study aims to rectify. Systematic mining of 80+ years of the phytochemistry and biology literature, using the NAPRALERT database, revealed that only 39 compounds represent the NPs most reported by occurrence, activity, and distinct activity.
Read More...
categories publications science